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THEORETICAL INVESTIGATIONS ON THE INSTABILITY

OF

STEEL FRAMES IN THE ELASTO-PLASTIC RANGE®

MICHELE PAGANO and GIOVANNI MORABITO
Institute of the Theory of Structures, University of Naples, Italy

Abstract—This paper deals with the initial results of theoretical and experimental research concerning the
behaviour of a steel I-beam frame structure under a generic scheme of proportionally variable and horizontal

loads.
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elastic modulus of the material

sum of horizontal forces acting above floor i relative to the service load

height of storey i

order of numeration of storeys (i = 1...r) and thus also of the unknowns corresponding to dis-
placements, in the system of equations

generic node

moment of inertia of the section of the bar chosen as the unit of length
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number of phases (n = 1,2..)

total number of plastic hinges in the nth configuration; by the application of Ax™q the nth hinge
is formed

sum of normal forces in all stanchions of storey i for the service load configuration

symbol for the service load configuration

symbol for the highest load applied in the nth phase

total number of floors

total number of nodes

value of increase of displacement of storey i in the nth phase (sth), (disregarding factor D)
unknown bending moments (j = number of the order of unknowns in the system of equations)
increase in unknown bending moment in section j in nth phase (j > r)

factor defining the total load applied in the nth phase

multiplier of the service load configuration which defines the maximum stress which the structure
can bear in the nth (sth) phase

variation of stress in the pth plastic hinge (p = 1,2...n—1)

rotation of the end of a generic bar a(b) anchored at node K

rotation of pth hinge in the nth phase

INTRODUCTION

LEAVING to a later paper the results of experimental investigation still being carried out,
this study presents through the application of the four-moment equation a technique for

t The present study has been carried out under the auspices of the Centro Studi per I'edilizia of the University
of Naples, supported by the Italsider Company and the Consiglio Nazionale delle Ricerche.
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fully evaluating for a structure the variation of stresses and displacements introduced by
the destabilizing effect of vertical loads assuming an ideal elasto-plastic behaviour of the
material and the idealization of the cross-section of the bars as two concentrated masses.
The computerized calculation procedure illustrated here yields a quantitative evaluation
of the phenomenon in its entirety from a condition of full elasticity to final collapse, within
a time sufficiently short for practical applications.

The structure, initially highly hyperstatic, is progressively weakened, as the load
increases, by the formation of successive plastic hinges, and shows for a value of the load,
which is defined as critical, a phenomenon of *‘snapping”. Subsequently, under conditions
of instability and with decreasing loads, the structure continues to distort and additional
plastic hinges are formed, which reduce it to a kinematic mechanism.

The preliminary hypotheses and the approximations adopted are also discussed. In
conclusion, it is thought that for structural steel frames, the procedure proposed will provide
an acceptable means of calculation, both from the standpoint of theoretical formulation
and practical application. It is hoped that experimental results to come will also prove
it to be conservative. A selected bibliography on this subject has been included.

1

The calculation of plastic collapse presents difficulties when undertaken in general
terms from a purely theoretical viewpoint as regards the structural configuration, the shape
of the bars (perhaps curvilinear and of variable cross-section), their cross-section and the
material of which they are made.

In practice, however, considerable simplifications can generally be made when proper-
ties mentioned above are specified. In other words, especially important structures can
always be specially designed because in such cases the work-time and design effort are
justified, even though they are greater than normal.

In an earlier study [1] the following restrictive hypotheses have been formulated :

(a) The frame consists of rectangular units built up from rectilinear bars of constant
section and vertical stanchions.

(b) The structure is considered continuous and, for the service loading, the ratio of the
normal force to the Euler load for every bar (P/Pg) is small (less than 0-1). This
hypothesis should, in general, be satisfied in framed structures in order to prevent
excessive deformability.

(¢) The material used is still with elasto-plastic characteristics presented in the usual
bilinear form, and all loads are increased (or decreased) proportionally, by a
common load factor «.

(d) The yield limit, experimentally obtained, is not defined by means of a single value
but by a range of values which contains all the test findings on specimens. Such a
hypothesis is appropriate when using an iterative procedure [ 1] with load increments
determined by trial, since less precision is required in determining the magnitude of
such increments.

(e) The limit moment corresponding to the formation of a hinge condition is indepen-
dent of the normal force variations subsequent to its formation.

(f) The deformations due to shear and to normal forces, the latter being considered
both as axial shortening and as a reduction in flexural rigidity, are negligible.
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(g) Each hinge forms when the strain in the stanchions due to normal force and bending
moment or the strain in the horizontal bars due to bending moment alone attains
a value within the yield belt, neglecting the effect of the shear force (Fig. 5)t. Also
ignored are local concentrations of stress corresponding to points of load applica-
tion and connections at nodes, as well as any other possible local effects such as
internal rolling stresses and faults, material flaws, eccentricities of construction, etc.

(h) The cross-section is idealized by two concentrated masses. Included in this hypo-
thesis, it is felt, are most of the sections used in steel structures, e.g. I-beams and box
beams.

(i) The hinges are localized in one cross-section, taking account of its shape. The
eccentricity of the hinge, depending on the simultaneous presence of a bending
moment and a normal force, has been ignored.

Under these conditions the limit of elasticity is reached throughout a given section at
the same time. The present study, from a theoretical point of view, is not substantially
affected if the ultimate stress in the bar is reached at the same time throughout any other
part of its length.}

Through such hypotheses, there was proposed in a previous study [1] an iterative
procedure to analyse, step-by-step, the stresses and deformations of a structure in the
elasto-plastic range. The destabilizing effects of vertical loads were also taken into account
(Fig. 1) and there was thus obtained a critical value o* of the load factor for a hyperstatic
structural design. The results are substantially different from those of the “rigid-plastic”
theory which, apart from any destabilizing effect, identifies the collapse with the value of
the critical load factor which makes the structure partially or completely unstable.
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FiG. 1 The forces H; represent the destabilizing effect of the total vertical load N; acting on floor i,
due to the inclination X;D/h; of storey i.

tIn order to take into account the phenomena of hyperelasticity, it is convenient to assume values for the
limit of elasticity based on physical flexural tests of each bar.

1 This case would correspond to a constant moment throughout a simple bar, the normal force being held
constant.



MICHELE PAGANO and GIOVANNI MORABITO

262
o b
\
\
40.00 '\
\
30.00 ??\
\
20.00 bOg
10.00 | 3
2% |
B q\' E
N 1
am ~ ! G
. 1 - | S/
\_ ] /
~ !
LY I I S
~. <|5
T~
g ~.
4.00 4 @> 180 .
9M 7H\\
Pam
ses| . ®MO e e
16 HY
/
[ Srom
20 af o N
16 M
19 PPJ18 H —_— ;
i - > —
b S
3.00+ [P T~
! /
’I /
j ©)
/
;I a— @ [
/ (@
:' |
/ @ |F
2.00_. i @
! |
/
j o !
] l @
3.65 |
3.24 N
3.00 | @
la b_
1.00.] 2.00 |
1.00 4
o 100 200 300 400 500 -
20 30 40 Agem

] 10
FiG. 2(a). Curve (1) represents the link between the load factor and the displacement of the bottom floor (A,)
according to the new theory ; Curve (2) represents this same link according to the rigid-plastic theory; Curve (3) is
relative to the state of instability of the bottom storey (i = 4), in continuation of curve (1); Curve (4) is analogous
to curve (3), but takes into account the effect of normal stress; Curve (4') is again analogous to curve (3), but does
not take into account the destabilizing effect of vertical loads and is continued up to the axis of the ordinates;
Curve (5) represents the critical load factor (in the elastic range) referred to curve (2). FiG. 2(b). Configuration of
frame with service loads (« = 1). F1G. 2(c). Constant cross-section of beams HE, 300. FiG. 2(d) Curve (1) of
Fig. 1(a) shown to different scale.
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The two theories are compared in Fig. 2. The abscissa represents the lateral displace-
ment of the bottom storey (A,) and the ordinate represents the load factor (a).

Curve (1) refers to the study mentioned above. It shows that the frame, having attained
the value o* = 3-65 after several load increments, subsequently deforms according to
the descending arc of the curve (unstable) corresponding to load decrements.

Curve (2), on the contrary, relative to rigid-plastic theory, shows only an ascending
line in which the structures bear successive load increments and reaches a final value
which is much higher (2* = 4-71) than the one shown in the previous curve (1).

‘a= 300 (1) a= 385 (9
o= 324 (2) @ = 365
a= 334 (3@ a= 364 ()
a= 34 (5 a= 363 (12
a= 384 (18 a= 356 (13

Fi1G. 3(a)
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FiG. 3(b)
FiaG. 3. Plastic hinges formed in the frame in the order corresponding to the numeration. The value of the
load factor is shown, (a) = new procedure, (b) = rigid-plastic theory.

Along curves (1) and (2) are shown the hinges which are gradually formed in the frame
[Figs. 3(a) and (b)]. They differ, in the two theories, both in number and distribution.

Curve (3) illustrates the conditions of equilibrium of the kinematic mechanism which
forms at the end of curve (1) and its equation is:
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in which ZM% represents the sum of the limit moments of the sections of the extremities
of the columns of the bottom floor and D, X, represents the horizontal component of the
displacement of the first floor. If in the evaluation of the limit moment, account is taken
of the existing normal stress, then the values of M¥ are all different from one another.
In describing the curve (3), the values of M}, have been assumed constant and correspond
to the value of the normal stress that is present in every section at the end of curve (1).

If on the other hand, account is taken of the variability of the normal stress, then
curve (4) is obtained, whose equation is:

3HN,
N [DyX 4 +(H/hy)\/(h3— DiX3)]+ Fy[{/(hi— DIX3) — (H/hs)DaX 4]

o =

where N, is the “fully plastic thrust” and H is the height of the cross-section. [Fig. 2(c).]

Furthermore, curve (4), which is in fact a horizontal, is derived from the preceding
relationship, provided the destabilizing effect of the vertical loads is ignored. In this case
the first term of the denominator vanishes.

Curve (5) traces the values of the global critical load factors in the elastic range for the
structural schemes which are gradually formed, in accordance with the rigid-plastic theory
shown for curve (2). For each structural scheme of curve (2), real hinges are substituted
for plastic ones and the material itself is considered as ideally elastic.

The values of these critical factors can be found by reducing to zero the determinant
of the system of equations corresponding to the successive schemes of the structure.

In [2] the calculation procedure which was carried out with the aid of an electronic
computer is shown in detail. For the initial structural scheme, which is very rigid, the
value of the critical factor in the elastic range proves to be very high (over 40). For the
successive schemes, the value decreases with the increase in the number of hinges and,
for a value of approximately a = 4, curve (5) intersects curve (2). After this intersection
curve (2) loses any physical meaning.

It is evident from the comparison that the two theories identify collapse with values of
o and of A which differ considerably and it is therefore necessary to introduce the
phenomenon of instability in the study of the behaviour of the structure. But for practical
technical application it appeared necessary to re-examine the hypothesis adopted and also
to work out a sufficiently rapid scheme of calculation. Some of the quoted hypotheses
can be verified without any further discussion—as for instance (a) and (b)}—whereas others
involve an approximation whose accuracy must be verified from both the theoretical
[(c), (d) and (e)] and the experimental points of view [(f(, (g), (h) and (i)]. Also, the iterative
procedure is undoubtedly very laborious and is therefore of little use in practical applica-
tions.

Such are the objections that gave rise to a programme of research. The present paper
reports the theoretical results achieved to date in this effort, which are as follows:

(a) Formulation and organization of a calculation procedure which could be carried

out by an electronic computer and be rapidly put into technical practice. This
calculation is based on the four-moment equation and introduces into conditions
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of horizontal equilibrium the destabilizing effect of vertical loads. The equation
system, changing from one deformed shape of the structure to the next, is considered,
together with the plasticization conditions, written for all the most stressed sections,
and any other conditions which, during the calculation, control the sign of the
variations in the rotation of plastic hinges after their formation.

(b) The elimination of the hypothesis admitting the existence of the *“‘yield belt” in
materials. Such a hypothesis, though corresponding to a physical reality and being
highly useful for the application of the iterative procedure proposed, suffers from
the theoretical defect of not being strictly conclusive to the achievement of static
conditions of safety, since, once the existence of a yield belt is admitted, it is always
necessary for absolute safety, to relate the formation of a plastic hinge to its lowest
limit.

(c) Elimination of the simplifying hypothesis which requires the limit moment, corres-
ponding to the formation of a plastic hinge, independently of the normal force
variation which occurs after its formation. In general, when the external loads
acting on the structure increase, the normal force varies in each plastic hinge and
the limit moment is modified according to the link defined by the boundary AB of
the elasto-plastic range as shown in Fig. 5(a). In a separate paper a report will be
made on experimental research on a model aimed at comparing theory with
practical reality and checking the validity of the above-mentioned hypotheses.

2

In relation to the choice calculation process, it is noted that the calculating system,
with the possibilities opened up by computerization, must enable the designer to intervene
easily when, with increasing load, the structural geometry becomes modified. Further, the
choice of one of the two well known groups of methods available for the theoretical analysis
of a highly hyperstatic structure (the “force” and ‘‘deformation” methods), permits the
adoption of a system of equations and the discarding of the procedure of successive approxi-
mations.

The method using the “‘four-moment equation” has been chosen, since this possesses
the essential advantage that the unknowns are the effective bending moments at the
extremities of the bars, just at the points where the plastic hinges mainly form ; furthermore,
it is not difficult to write the expression for the bending moments acting along a bar, in
terms of the effective bending moment acting at its extremities. This enables one to operate
directly on the unknowns, by imposing suitable conditionst for the various structural
geometries which vary as stresses are increased, and successive plastic hinges are formed.
In fact, when the system iof equations corresponding to the initial structural geometry has
been written, it is easy to modify it by excluding equations which subsequently lose their
validity (because they express congruence conditions which have lapsed) and introducing
appropriate equations to express constraints of plasticity for the cross-sections of the frame
in which the material has reached the limit of elasticity in the domain (M, N) represented by
the straight line AB in Fig. 5(a).

t The advantage of acting directly on the unknowns compensates for the fact that the sets of equations to be
solved is greater than that involved in a “‘deformation” method.
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3

For the practical application of the procedure discussed there must be written, for
the initial geometry, the equilibrium relations of the translation of the storeys and the
rotation of the nodes, as well as all the congruence relationships possible for each node and
the expressions of the maximum stresses in those sections where it is anticipated that the
elasticity limit will be exceeded. The system of equations, as related to the nth stage, in
which the structural system has n— 1 plastic hinges, is then made up of the following:

(a) the equilibrium equations of the translation of the storeys, equivalent to the number of
storeys (r)

(b) the equilibrium equations of the rotations of the nodes, equivalent to the number of
nodes (1)

(c) the congruence equations, so selected in each node as to be linearly independent.t
This selection is initially free [with m(m—1)/2 possibilities in each node], whereas
it will become increasingly restricted, in successive stages, for those nodes where
plastic hinges form

(d) a number of plasticization equations, equivalent to n— 1, expressing constraint upon
any increase of stress in the already plasticized sections

(¢) the conditions which maintain a constant sign of rotation in every plastic hinge, in all
the phases after their formation.

If the value of Ax™ is the maximum load increase bearable by the nth structural con-
figuration, i.e. such as to bring another section to the threshold of plasticity in such a way
that the number of hinges goes from n—1 to n, then the corresponding analysis may be
expressed symbolically in the following way:

n-1
Ad™ND Y X©+ XE")) +a""UN.D XM

s=1

+ Y XP L AdFR =0 (i=1,2..9(>r (la)

YX;=0 (in number equal to ) (1b)

K
@.x = ok (a, b: bars forming node K) (Ic)
Ao, =0 p=12...n-1) (1d)
PX—@rrV 20 ifer* V20 (le)

The first term of the sum in parentheses in equations of the type (1a), proportional to
the rotation of floor i at the end of the preceding stage (n— 1), is known.

In the initial stage (n = 1), the type (1d) equations are absent, as there are no plasticized
sections in the structure.

Only the relationship type (1a) associated with the displacement of floor i, deserves
special note, since the destabilizing effect of vertical loads has been introduced. This is the
sum of four terms, of which the third and fourth formally represent the usual ones. For
the other two it should be observed that in the nth phase the structure is subjected to the
new load g"—q" ' = Aa™gq. The first term in the equation takes into consideration the

+ The number of equations equals M —(n— 1) if the n— 1 hinges have all formed at the extremities of the bars
(see the Notation).
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horizontal component of the part of these loads above the floor i, distributed along the
slope of the uprights of storey i and the horizontal. The second term takes into account
the increase, again assessed horizontally, which the analogous components of vertical
load g~ Y, applied in the preceding n— 1 phases, undergo because of the further increase
in the slope of storey i due to the superposition of the additional loads ¢"—g"~ ' = Aa™g,
corresponding to the nth phase.

4

Initially, that is in the absence of plastic hinges, system (1) contains, as has been said,
only equations of types (1a), (1b), and (1c).

If the loads are increased, the stresses also increase and, in the most highly stressed
sections, the material may reach the limit of elasticity. Generally speaking, it is usually
easy to detect those sections in which, by reason of structural design and load, plasticiza-
tion is likely to occur. Such sections are calculated in terms of the maximum stress.

The hypothesis that the section is made up of only two concentrated masses makes the
formation of a plastic hinge coincide with the reaching of yield stress. The value of the
load factor o' which corresponds to this plasticization condition in the first section,
provides the maximum load ¢'¥’ which the structure can bear under conditions of absolute
elasticity. This value is normally calculated on the basis of the current procedure to verify
structural stability. The electronic computer is able to determine the stress values in all the
sections chosen in terms of «, and hence to provide the value of (). The plasticization
condition which must be verified is expressed in the following form:

MOJW + ND/4 = g,

where MY and NV are the bending and axial characteristics of the first section to become
plasticized, which can be expressed in terms of the unknowns X, W is the flexural modulus
of resistance, and A is the area of the section.

In the following phase, in this plasticized section, no further increases of stress can occur.
Therefore by making the stress due to further load increases equal to zero, we obtain the
first plasticization equation (1d) to be adhered to which replaces, in the system of equations,
the congruence equation now no longer valid. In node K, in fact, we may write only (m* —2)
congruence equations (m® being the number of bars making up node K).t

The plasticization equation will therefore be:

Ac = MP/W+NP/4 =0

where M® and N'? are the values of the increases in moment and normal force in the
plasticized section, again expressed in terms of the unknowns X(?.

The procedure to be followed in successive phases is perfectly analogous: the plasticiza-
tion equations are progressively substituted for congruence equations. Such modifications
prove to be very easy by the chosen method of calculation. Load increases sufficient to
create further hinges, become progressively smaller. In fact, there occurs for a phase which
can be termed “‘critical”, corresponding to a structural scheme which is always hyperstatic,
a condition where deformation and stress cease to be the result of increases in load and in

t 1t is possible that more than one of the equations in the initial system relative to node K in which the hinge
has formed, may become inoperative. In this case, (m—2) linearly independent equations must be chosen from
among the conditions of congruence relative to the bars where there are no plasticized sections.
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which the load values begin to decrease. In other terms, after this condition is reached, the
system is satisfied if a load reduction occurs (Aa negative), and provides for it a solution
that is still balanced and congruous, though unstable. Even a very slight load increase
would in fact now involve configurations which are no longer in equilibrium, but tending,
by a dynamic succession of movements, towards infinite values of displacements. The pro-
cedure then continues until the configuration becomes partially a kinematic mechanism,
and hence, as has been previously explained, a single equation of translation equilibrium by
itself provides all further configurations of equilibrium of the structure which are unstable.
That part of the structure which has become unstable will obviously have deformations
affecting the residual part of the structure which is still hyperstatic or, at the most isostatic,
and which may therefore be considered as rigid in relation to total deformations.

5

For the procedures set out above, two distinct computer programmes have been
formulated which permit the requisite calculations to be made in the SNAP assemblative
symbolic language.

With reference to the nth phase in which n—1 plastic hinges have already been formed,
the value of the load increase g"—q" ! = Ax'q must be determined and this brings a
further nth section to the limit of elasticity.

(a) In the first programme, a value Aa . g of load variation is given to the generic phase n,

which is broken-down into suitably small fractions (6Ax . g).

The total interval Aa . g, to be covered by the step §Aa . g, must be chosen so as to ensure
that a further plastic hinge is formed within that interval.

n-1

With reference to system (1), the computer first reads the value Y, X; for all r storeys
1

of the frame as well as the value «®~ 1, which emerges from the preceding phases and
which are necessary to construct the known terms b; (with i = 1,2,...r) and the coeffi-
cients of the leading diagonal (C,,,...C,,) of the first r equations, respectively, within
the matrix of the system. The computer is then fed the extreme values Ax; and Aq, of
the interval assigned for Aat and with the step dAa regarded as most suitable to determine
fairly exactly the point of formation of the plastic hinge. After this, the entire system of
equations is read off and stored in two different memory cans A and B. On the second one,
the method of matrix inversion is used for resolving the system corresponding to the
generic value of Aa internal to the interval examined. When the results. of the interval
assigned for Aa have been printed out, it is possible, without the computer, to determine
the value Aa™ for which the plasticization conditions indicate the attainment of the thresh-
hold of plasticity for a further nth section.
Introducing the corresponding equation type (1d) into the system, in place of type (ic),
which is no longer valid, the computer may be made to start the successive phase (n+1).
(b) The second programme allows for the carrying out, by the computer, of all the
operations mentioned above, which are necessary not only for solving the single

t Note that the load to be applied to the structure may have a negative value, and therefore the interval to
be assigned to Aax must also take this possibility into account.
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elementary system, but also for checking these equations expressing plasticization
conditions. These conditions are then read off and appropriately stored.

In this second programme the computer is given the instructions Aa; and the step dAax,
omitting the interval Ao; + Aa,.

In fact, as soon as a plasticization condition (unequation) is manifested (Aax = Ax'™),
the computer is programmed to stop and print, with obvious advantages over the preceding
programme. Machine time is in fact considerably reduced and the resolution of the systems
for the interval Aa™ < Aa < Ao, and the printing of those relative to the interval
Ax; < Ao < Aa'™ are avoided.

Preparatory and resolving operations for the system are identical with those illustrated
for the foregoing programme. Invalid equation detection is additionally inserted, followed
by a test to denote the achievement of a condition of plasticity. If the outcome of the test
shows that plasticity has in fact come about, then the iterative process stops, as already
mentioned, and the computer prints the serial number of the invalid equation which has
occurred and prepares to read a further plastic equation, type (1d), to be substituted for
the elastic-type equation (1c). A signal from the console resets the system for reading and
the resumption of the cycle.

In each phase, therefore, when an invalid equation (unequation) appears, all the data

and the value of A« and of «~ "), and of the bending moments }_ X ; (which have accumu-
1

lated in the n phases) are printed.

6

The procedure set out in the foregoing sections was applied to the frame shown in
Fig. 4(a), subjected to service loads (x = 1). Both above-mentioned programmes were
applied and their flow-charts are shown in Figs. 6 and 7.}

The limit stress value was assumed to be 3-100 kg/cm?, on the basis of experience
gained on a single structural element. Critical conditions occurred after eight phases
(corresponding to the formation of eight hinges) for increasing values of o (Fig. 8). Under
such conditions the structure is hyperstatic. Subsequently, for decreasing values of a, four
other hinges form and a partial kinematic mechanism is reached. In fact, a mechanism forms
in the bottom storey, where stresses are higher on account of the particular proportional
criterion chosen to indicate more clearly the physical behaviour of the structure and to
distinguish from one another, the various factors giving rise to the formation of successive
hinges.

The position of the hinges, which are progressively formed, are illustrated in Fig. 8.
To each subsequent structural configuration there corresponds an equation system (1)
as explained in Section 3.

In Table 1 are shown the most significant values for all twelve phases the structure goes
through. Figure 9(a) shows the curves which link the load multiplier to the horizontal
displacement of the three floors.

T The calculations were made by the CDC-G 20 type electronic computer of the Electronic Computing
Centre of the Engineering Department of the University of Naples.
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FiG. 4(a). Configuration of the experimental frame and the loads corresponding to « = 1. All bars are
drawn sections HE, 100.

(A = 2126 cm?; I = 431:66 cm*; W = 9596 cm?)

In Fig. 9(b}is shown the rotation of the hinges in relation to sections 25-27 as a function
of a. For all the other hinges analogous curves have been found, but the corresponding
numerical values are not shown.

Figure 10 shows the “rigid deformation” of the frame in each phase.

7

By way of example, some equations relating to the eighth phase at the beginning of
which there are only seven hinges are written. The eighth hinge forms when the load factor
has passed from the value 3-8318 (corresponding to the seventh phase) to the value 3-8424.%

The type (1a) equations, relating to the conditions of the translation equilibrium of the
storeys, in the system (1) (Section 3) are expressed as follows.

t The equations show the symbol Aa‘® which represents the load increase leading to the formation, in the frame,
of the eighth plastic hinge. The computer, on the other hand, as already stated and clarified later, analyses
numerous values of Aa which are variable by a given step.
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HxH-s

a)

FiG. 5(a). (Plastic range) relative to profile HE, 100 and to two masses of equivaient moment of inertia
concentrated at the ends of the cross-section.

For the top storey we have:
7

Aa‘S)NlD(Z X1+X1) +a N, DX+ Xg+Xo+ X 0+ X, +X12
1

+X3+Aa® F b =0
By substituting the values:

.
Y X, = 26104428 kg-m
1

N,D = 0027759
ol” = 3-8318; F, =400kg; h; =250m
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Fi1G. 4(b). Photograph showing the experimental frame to be tested, together with the method
of applying the load and of measuring the distortion.
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FiG. 5(b). Comparison between the ultimate strength of an HE 100 profile and two masses with
equivalent moments of inertia, concentrated at the ends of the cross-section, subjected to an eccentric
loading.

(n-1)
READ :1:1,¢"‘“’,A«1,Auf,64u.

READ SIMULTANEOUS EQUATIONS MATRIX
AND STORE IN A anp B

A=A

COMPUTATION OF THE COEFFICIENTS
€y, C22,C33, by, bz, by,

COLUMN OF KNOWN TERMS IS MULTIPLIED BY A «

SYSTEM SOLUTION AND PRINT RESULTS

INCREASE A « BY Sax

TRANSFER A IN B
L Aa>aag? YES END

F1G. 6. Flow chart described in Section 7(a).
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READ aai AND éAaj

-

l READ UNEQUATIONS\

|

(=4 (n=9)
Aa=da; , o = I‘: H

READ SIMULTANEOUS EQUATION MATRIX
AND STORE IN A anp B

= 0

COMPUTATION OF THE COEFFICIENTS
A v B

lmmsrsn €y, €y C33, by, by, by,

| COLUMN OF KNOWN TERMS (S MULTIPLIED BY Ad.1

!

rSVSTEM SOLUTION

INCREASE Xp +% Xi = v
=)
ax BY daa PeEx - F AP

NO UNEQUATION
IS SATISFIED

0F
UNEQUATIONS

th UNEQUATION
ith s saTisFien

PRINT RESULTS J

FRAME PRESENT
PLASTIC MECHANISM

NOT

L SUBSTITUTIVE EQUATIONS \]

|

READ FOLLOWING
aa; AND Sdaa

{(n-
g |

(n)
o«

T
F1G. 7. Flow chart described in Section 7(b).
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a= 32402 (1) o= 3838 (7)
a= 34831 (2 o = 30424 (o)
o= 335839 (3) a= 3825 (9)
a = 35043 (4 o= 3.8185
a= 37970 (5) o= 3e41 (1)
a= 38020 (s o= 3750 (12)

F1G. 8. Plastic hinges which are formed, according to the new procedure, in the configuration of the
frame, which forms the model to be submitted to experimental test.

we have:

0027759 Ax®}(2610-4428 + X ;) +3-8318 x 0:027759X ,
+X8+X9+X10+X11+X12+X13+Aa(8)><400><2'50 = 0

or:

0:027759(Ac'® +3-8318)X | + Xg+ Xo+ X 10+ X1+ X 12+ X 45
= — Aa®(1000 +0:027759 x 2610-4428).
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TABLE 1. TOTAL VALUES OF THE UNKNOWNS FOR EACH PHASE AS CALCULATED BY THE ELECTRONIC COMPUTER

UNKNOWNS a=32402 a= 3.4831 ax= 35839 a= 3.5943 a= 3.7970 a=3.8020
X, 2151. 1262 2304 .9385 2370. 5564 2378 1487 2555 0982 2559 . 9687
X, 3578 0662 3846 . 4227 3972.5386 3997 .0592 4527 1038 4557, 2355
X4 3753, 8960 3477 . 4515 3699 . 3666 3728 . 4790 4520 . 3048 4587 . 6040
X4 - 558.9690 | - 602 .0967 | - 6/9.0335 | - 620 7732 | - 650 4889 | ~ 651.0212
X 1875 20571 2013 . 7418 2071.8267 2077 8353 2199 . 3608 2202.5907
X — /43 2124 | - 157.9956 | - {164 9473 | — 164 5614 | — 163 3036 | - 164.6231
X, 961. 2252 ‘ 10308873 1059 . 3063 1062 6326 1132 . 8376 1135 . 4585
X g 558 9690 | 602 0967 619.0336 | §20.7732 £50. 4889 651. 0212
Xg 604 0771 E45 1255 659 . 3948 561 .6775 716. 7628 719 9374
X 10 - 1731.9926 | - 1855.7462 | ~ 1907.6793 | ~ 1913.2738 | - 2034 0569 | — 2037 9676
X4 - 1280.2839 | — 1365 8377 | ~ 140f. 1636 | ~ 1404.5064 | — 1475.4456 | — 1477 0317
X4 961.2252 | - 1030 8873 | - 1059 3063 | — 1062 6326 | — 1132 8376 | - 1735 4385
X3 - 621.9121 | -~ 670 4438 | -~ 686 8539 | ~ 689 0814 | ~ 719.6809 | — 720 6584
X 14 — 288 0656 | — 314 1136 | - 325 4105 | - 325 .4853 | - J04.9092 | - 301.6370
X5 2349.4379 2525 1647 2598 5251 2607.0548 2781. 1068 2797.9847
X 15 1099 5481 1182 . 2648 1221 . 3364 1006 . 5246 13650756 | 13720287
X 47 2091.5601 2241 6827 2310 . 7269 23¢8.5025 2517. 7603 { 2505 9345
X8 —~ 315.9504 | — 337 0149 | — 333 9883 | — 336.4922 | — 411.8535 | — 418 3003
X9 145.9738 194 . 3058 234 2414 237.9447 367. 2615 371. 8183
X 2 ~ 2168.6721 | — 2341 5918 | - 2418 6978 | — 24280730 | - 2680. 7388 | - 9692 9817
X 5 — 2081.8291 | - 2265.7704 | - 2340 7657 | — 2349.4960 | — 2470.6374 2472 6008
X5 ~ 1469.6479 | — 1571.2389 | - 1623 8729 | — 1629 421/ | — 1798.0814 | - 1805 2760
X 23 — 1229.7567 | - 1290 .9934 | — 1331 3628 | — {330 4010 | — 13/5 6329 | ~ 1307 4068
X 24 217. 2784 246 1148 281 7853 288 . 4402 370. 7228 378 8053
X 25 2667 2431 2862 1451 29605722 2073 . 7004 2973.7004 | 29737004
X 26 15730953 1614 1532 1669. 7117 1673 . 4792 1908. 1864 1926. 4731
X 27 2658. 1855 2877 9952 2973 6407 2973. 6807 2973 6807 2973 6807
X 58 ~ J63.2530 | — 437 4207 | — 516 0267 | — 526 .3850 | — 737.9844 | — 750.6177
X 59 - 1758.5745 | - 1957 4361 | — 2407 6966 | ~ 2127 4320 | — 2629 1446 | — 2628 7900
X 30 — 2098.5092 | - 2210.5278 | ~ 2289.5/82 | — 2097.6836 | — 2411 2489 | — 2427. 5796
X 31 — 2626 2026 | ~ 2600.0778 | — 2589 3750 | ~ 2588 0284 | - 2564 7602 | - 2564 5568
X3, ~ 1428.4288 | — 1587 0017 | ~ 1642 3184 | — (643.2796 | — 1658 0477 | — 1666.2739
X 33 — 2291. 1624 | — £532.2266 | — 2618 9575 | — 2517 .7584 | — 2489.7700 | — 2488 6417

)
1
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TABLE 1 (continued)
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UNKNOWNS | a= 3.8318| a=3.8424| a=3.8254 a=3.8185| a=3814!| a=3.7500
Xy 2610 4428 2702.1206 2872.77/8 2927 1486 2953 . 0834 3061.7/93
X, 4870 .5228 5702 .0273 7231.6709 7537 4000 7666 .1779 8332 5644
X, 5174 .9934 7290. 4146 10741 3140 11365. 6110 11604 . 6250 14006 2210
X, — 656.1776 | — 656 4685 | — 647 7087 | — §£38.69/8 | — 634 0386 583 5760
Xs 2226 . 4011 2048 4620 2272 5904 2280 . 3005 2283 . 3521 2277 9470
X 6 - 149. 9209 110 .5575 | - 27.4503 | -~ 7.0038 2. 8705 +7.8356
X 7 1150. 0290 1122 . 2138 1207 6640 1214 . 7384 1218 0737 1215.48/0
XG 656.1776 656 . 4625 647 .7087 §38 .6918 £34. 0366 593 5760
X 768 . 4050 878 6116 1080 . 3838 1124 . 4999 1140 . 3604 1165 9695
X 10 - 2076 .4802 2137 .95044 | — P245 1400 ~ 2273 2968 | — 2286. 1626 — 2325.7826
X5 - 1523.5716 1604 .2532 | - 1789 4685 ~- 1822 6476 — 1837.0767 | - 1876 2361
X2 - 1150 . 0290 1172 .2198 | — 1207 6640 | ~ {214 7384 ~ F2/8.0737 | - 1215 48/0
X 43 - 702.6634 656 4163 | - 550.8096 | - 506 .8777 | - 486 1137 | - 3467793
X 44 -~ 269.4959 175 .9877 22. 9032 72 . 4437 90. 8463 183 . 5617
X4 2829.9235 2876 .1877 2949.5998 2973.8585 29736323 | 29736323
X 16 71331. 9559 1438 . 5483 1540 7470 15507313 1554 2247 V;oo .”52;’ﬂ1
X 17 2591 .6570 2720 4781 2977. 0442 2977 0442 2973 6445 2.973,64;:5%
X8 — 499 .9090 7026839 | — 743 Y870 | — {196 9436 | — {231 2067 | — 1349.53/2
X 49 377.6294 493.8987 599. 4056 606 .0620 603 . 9966 834.0396
X 20 - 2691.6078 2693. 4828 -~ 2700.8783 - 2701 3492 | - 259; 7803 - 2697, 008;7
X21 — 2477.6167 2683 7842 | — 2697. 1802 - 259{,;;7{ - 2;31 . 5848 1 :-36‘37 40.97ﬂ
X2z - 1888 9876 2064.0617 | - 2426.2345 | — 2470 1664 - 2487 5308 | —'726‘45'..92524‘
X 53 ~ 1262 5855 987.6034 | — 599.6745 | — 537 0584 | — 507 .87/35 | —~ 504 4277
X 24 460 .5464 770. 1605 13719 .2980 1404 6184 1467 .2823 1821.2739
X 25 2973. 7004 2973. 7004 2972 . 7004 2973. 7004 2973 . 7004 2973, 7004
X 26 2071. 8264 2280. 3609 22911584 2291. 4666 2291 4037 2303. 7802
X 27 2973 6807 2973 . 6807 2973. 8807 2973. 6807 2973 . 8807 2973 6807 }
X2 - 438.4759 1264.0592 | — 1918 . 7037 — 2030.6804 | ~ 2071.2796 | — 2685 3136
X 29 — 2687 0493 P630. 1531 | — 2639.7023 | — 2642 2177 | —~ 2643 3127 | — 2654 6071
X 30 - 2567.91071 2570.2765 | — 2573.6785 — 2573.5159 ~ P573 .5¢16 | — 2679 6708
X3 - 2567. 7240 P570.0904 | — 25737.4324 | - 2573 3298 - P573.5555 | - 2579 7047
X3z - 1711.0852 1986 .0772 | — 2374 0061 | — 2442.6P22 | ~ 2465 8672 | — 2469 2530
X 33 - 2981.5365 2472 £227 | — 2465 1947 — P465.0829 | — 2465 /916 | — 2468 5773
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3.5839_ " vy, b4
3.4831 .7 /e
3.2402
3.0000
A )X‘ xs( & )x" ¥r ¢ 1" storey (i=1)
w4 -t 4
Xs X10 X2
X 10) X ) X
/'\sx @ /'\\"x @/ 13 h )
0 " ¢ E) i tojr 2 storey (i=2)
2.0000 | - RN X7 W]
X8 O] X20 X322
X, 2 X. X
/\mx @ | 21x@ ORI N .
6|\ 10\ X6 t~l1 3 storey (i=3)
p’ PANCLT X,
] . 25w ] 27\%
X28 ™ X30 an X3z
1.0000 .

Lor
@
O

X;:D
T e
Q 10 20 30 cm

F1G. 9(a). Horizontal displacement A, of three floors, as a function of «. The unknown bending moments, appearing in the equation system
have been written on the frame configuration, the unknowns X,, X ,. X ; are the relative horizontal displacement of the storeys (regard-
less of factor D;). On the other hand, the curves represent the absolute movements of the horizontal floors.
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ol |
3.8424
3.5943 |
35839
3.5000 -

14

F1G. 9(b). For example, the rotation of the hinges in sections 25 and 27 are shown. The diagram is
analogous for all the other hinges.

£
VPO OM © 1] n €I~ :
688832 b4 s 28 <
SrunNmyw © O B E
) e 7 |
o 1"'storey /
/
1 2thsto"ey /
— a"'sl'orey
1 DLXL=

F1G. 10. Deformation of the frame in the twelve phases of the procedure.
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Similarly, for the middle storey (i = 2) we have:
7
N,D = 0055158; Y X, = 48705229 kg-m
1

F, = 800kg; h, =250 m.
Thus obtaining:
0-055158(Aa® +3-8318) X, + X 15+ X 10+ X0+ X+ X0+ X3
= —Aa®(2000 +0-055158 x 4870-5229).

Finally, for the bottom storey (i = 3), we have:
7
N;D = 0-082739; Y X5 = 51749934 kg-m;
1

F; = 1200 kg; hy = 2:50 m.

and obtain:
0-082739(Ac'® +3-8318) X3+ X5+ X0+ X 30+ X3, + X3+ X33
= — Aa®(3000 +0-082739 x 5174-9934).

The equations relative to the node G at which bars without plastic hinges at the ends
join, are written symbolically :

X8 =
L

Pep = Pou

P = PaL

In explicit form we obtain, respectively :t
Xig+ X4+ X,0=0
X 5—2X 10+4X,4—2X,5— X, = —2670 Ac®
Xyo—2X,5+4X 30 —2X,5~ X5 = —2670 Ax®

The equations referring to the node H, which, in this phase, develops hinges in the
sections where X, and X5, are applied, are also of type (1d). In symbolic form we have:

S =0
K
PuE = PHi
Ac,5s =0
Agyy =0

+ The coefficient of Ax‘®, in the second term written, for the longer bars, has the value of 3x2x g = 3x2x %
Pl = 2:670 kg-m. The factor 3 derives from the algebraic sum of the moments of fixing of the two ends of the
bar due to external loads. Factor 2 depends on the fact that the length of the beam is twice the one taken as the
unit of length. For the other bars the coefficient is 3 x u” = 3 x} Pl = 375 kg-m. Factor 2 does not appear in
this instance, since the length of the bar is precisely that of the control. For the stanchions the coefficient is nil.
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We deduce:
| Xy1+ X35+ X6+ X30=0
20—2X21+2X36—2X3,— X, = —375Ac®
__XL=O
) 0-00009592
—X30 n 1 Kat Xat Xrat Kot Xout Kog—2X
000009592 ' 0:002126 x5 * 5 14 15 24 25 6
3-000
\ —2X7_2X16—2X17_2X26_2X27)+Aa(8).—m=0_

In the last equation the normal stress is expressed in terms of the moments X; and of
the external loads. The value §Ax = 0-0001 has been assigned to the phase under examina-
tion.

The eighth hinge forms in section 21 in which for A«® = 0-0106 the plasticization
condition is satisfied and has the following expression:

— ( — — — —
0~00009592+0-002126><5‘X4+X5+X14+X15 2Xe—2X,-2X,6—2X,4)

2000 |
Ad® 2P 31 000,000 = 0.
+ A0 e 0a26 S 1000,

In the light of what is set out above, it is thought reasonable to state that the proposed
theory appears to be applicable to rigid steel I-beam frames and that it could become
a valid instrument for practical technical applications, with the help of an electronic
computer.

It is felt that the hypotheses formulated are such as to supply theoretical results giving
a greater margin of safety when compared with the results in practice. In this connection,
the results of experiments still under way, will be communicated as soon as available.

Acknowledgement—We gratefully acknowledge the aid of Mr. F. Maceri, Engineer of the Electronic Computing
Centre, in evolving the programmes.

A SELECTED BIBLIOGRAPHY

[1] M. PaGgano, La rovina in regime elastoplastico ideale dei telai rigida in acciaio. Costruz. metall. n. 4 (1963).

[2] M. PAGANoO, Strutture, vol. I1, parte II, edited by LiGuori, Napoli (1963).

[3] J. F. BAKER, The design of steel frames. Struct. Engr 27, 397 (1949).

[4] M. R. HORNE, Maximum beam moments in welded building frames. Struct. Engr 28, 109 (1950).

[5] P. S. SymonDs and B. G. NEAL, Recent progress on the plastic methods of structural analysis J. Franklin
Inst. 282, 383 (1951).

[6] P.S.SymoNDs and B. G. NEAL, The interpretation of failure loads in the plastic theory of continuous beams
and frames. J. geronaut. Sci. 19, 15 (1952).

[7] B. G. NeAL and P. S. SyMonbs, The rapid calculation of the plastic collapse load for a framed structure.
Proc. Instn. civ. Engrs, part 111, 1, 58 (1952).



282 MICHELE PAGANO and GIOVANNI MORABITO

[8] M. R. HorNE, The plastic model of British standard rolled steel joists. Br. Weld. Res. Ass. Rep. F.E. 1/33
(1953).

[9] W. MerRcHANT, The failure load of rigid jointed frameworks as influenced by stability. Strucr. Engr (July
1954).

[10] F. Campus and C. MassONET, Recherches sur le flambement de colonnes, en acier A 37, a profil en double
té sollicitées obliquement. Bull. Cent. Etud. Rech. scient., Liége. 7, 119 (1955) ou C.r. Rech. Inst. Encour.
scient. Ind. Agric.n. 7.

[11] W. MERCHANT, Critical loads of tall building frames, part L. Struct. Engr 33, 84 (1955).

[12] R. K. LivesLEy, The application of an electronic digital computer to some problems of structural analysis.
Struct. Engr 34, 1 (1956).

[13] M. R. HornE, The stanchion problem in frame structures designed according to ultimate carrying capacity.
Proc. Instn. civ. Engrs, part 111, §, 105 (1956).

[14] W. MERCHANT, Frame instability in the plastic range. Symp. on the Plastic Theory of Structures, Cambridge,
1956. Br. Weld. J. 3, 366 (1946); also discussion by R. H. Woob, p. 26.

[15] W. MERCHANT and R. B. L. SMITH, Critical loads of tall building frames, part I1. Struct. Engr 34, 284 (1956).

[16] R. E. BowLes and W. MERCHANT, Critical loads of tall building frames, part II1; IV. Struct. Engr 34, 324
(1956); 36, 187 (1958).

[17] M. R. HORNE, Multi-storey frames. Br. Weld. J. 3, 336 (1956).

[18] J. F. BAKER, M. R. HORNE and J. HEYMAN, The Steel Skeleton, vol. 11, plastic behaviour and design. Cam-
bridge University Press (1956).

[19] R. K. LivesLey and D. B. CHANDLER, Stability Functions for Structural Frameworks. Manchester University
Press (1956).

[20] H. G. ALLEN, The estimation of the critical loads of certain frameworks. Struct. Engr 35, 135 (1957).

[21] R. KLEMENT, Knickuntersuchung von Rahmentragwerken nach DIN 4114 Ri 10.2 mit Hilfe des Angleich-
verfahrens von Kani. Stahlbau (Dec. 1957).

[22] M. PacGaNo, Sul calcolo dei telai a nodi spostabili. G. Genio civ. fasc. 10 (1957).

[23] R. H. Woop, The stability of tall buildings. Proc. Instn. civ. Engrs 7 (Sept. 1958).

[24] W.MERCHANT, C. A. RasHID, A. BoLTON and A. SALEM, The Behaviour of Unclad Frames. 15th Anniv. Conf.
Instn. Struct. Engrs, London, 1958.

[25] A. SaLEM, Frame instability in the plastic range. Ph.D. Thesis, Manchester University (May, 1958).

[26] M. W. Low, Some model tests of multi-storey rigid steel frames. Proc. Inst. civ. Engrs 13 (1958).

[27] S. T. ArIARATNAM, The collapse load of elastic—plastic structures. Thesis presented to the University of
Cambridge at Cambridge, England in 1959, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

[28] B. G. NEAL, The Plastic Methods of Structural Analysis. Chapman & Hal! (1959).

{29] R. K. LivESLEY, A programme for the elastic analysis of rigid-jointed plane structures for use on Edsac II.

DC?7/70 specifications. Cement and Concrete Assoc., London, England (1960).

[30] J. HEYMAN, An approach to the design of tall steel buildings. Proc. Instn. civ. Engrs 17, 431 (1960).

[31] L. K. Stevens, Direct design by limiting deformations. Proc. Instn. civ. Engrs 16, 235 (1960).

[32] M. HoLMmes, Steel frames with brickwork and concrete infilling. Civ. Engr. Inst. Tech. Bradford (July, 1960).

[33] M. PaGaNo, Sul carico critico det telai elastici multipiani. Costruz. metall. n. 2 (1960).

[34] W.J. AusTIN, Strength and design of metal beam-columns. J. Struct. Div. Am. Soc. civ. Engrs 87, No. ST4,
Proc. Paper 2802, pp. 1-32 (April, 1961).

[35] R. K. LivesLey, Commentary on plastic design in steel. ASCE Manuals of Engineering Practice, Joint
Committee of the Welding Research Council and ASCE No. 41 (1961).

[36] S. TiMosHENKO and J. M. GERE, Theory of Elastic Stability, 2nd edition. McGraw-Hill (1961).

[37] J. HEYMAN, On the estimation of deflections in elastic-plastic frame structures. Proc. Instn. civ. Engrs 19,
39 (1961).

[38] M. PagaNo and G. ZINGONE, 1l calcolo di verifica dei telai piani alle soglie dell’ instabilita. Costruz. metall.
n. 3 (1961).

[39] Ch. MassoNET and M. Save, Calcul plastique des constructions. A.S.B.L. Bruxelies (1961).

[40] M. Osarvo and V. Levi, Columns in planar continuous structures. J. struct. Div. Am. Soc. civ. Engrs 89,
No. ST1, Proc. Paper 3408, pp. 1-13 (Feb. 1963).

[41] N.C. LinNp, Iterative limit load analysis for tall frames. J. struct. Div. Am. civ. Engrs 30, part 1 (April 1964).

[42] M. R. HORNE. A moment distribution method for the analysis and design of structures by the plastic theory.
Structural and Building Division Meeting, Dec. 1953.

(Received 11 February 1965 ; revised 20 December 1965)

Résumé—Cette étude traite des résultats initiaux des recherches théoriques et expérimentales en ce qui concerne
le comportement d’une structure de charpente en acier a rayon I sous un plan générique de poids horizontaux
et verticaux proportionnellement variables.
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Zusammenfassung—Diese Abhandlung beschiftigt sich mit Anfangsergebnissen von theoretischen und experi-
mentalen Untersuchungen iiber das Verhalten von Stahltrigern I-Geriisten auf Grund eines Schema von
verhiltnissgleichen verinderlichen senkrechten und waagrechten Belastungen.

AGcTpakT—3Ta CTaThl PAaCCMATPHBAECT OCHOBHBIE DE3YJ/IBTATHI TEOPETHYECKOTO M 3KCNEPHMEHTAILHOTO
HCCNeOBaHMA , OTHOCAILEIOCS K [TOBEIEHHIO CTPYKTYPbI KOHCTPYKLMH cTanbHo! I16anku mon obmelt cxeMoit
NpONOPUHOHAIBHO NEPEMEHHBIX BEPTHKAJILHBIX M FOPH3OHTAIBHBIX Harpy30K.



