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THEORETICAL INVESTIGATIONS ON THE INSTABILITY
OF STEEL FRAMES IN THE ELASTO-PLASTIC RANGEt

MICHELE PAGANO and GIOVANNI MORABITO

Institute of the Theory of Structures, University of Naples, Italy

Abstract-This paper deals with the initial results of theoretical and experimental research concerning the
behaviour of a steel I-beam frame structure under a generic scheme of proportionally variable and horizontal
loads.

NOTATION

Di ht/6El o
E elastic modulus of the material
F i sum of horizontal forces acting above floor i relative to the service load
hi height of storey i
i order of numeration of storeys (i = 1 ... r) and thus also of the unknowns corresponding to dis-

placements, in the system of equations
K generic node
10 moment of inertia of the section of the bar chosen as the unit of length
mIt) number of beams meeting at joint K

M = L(m1tl-l)
K

n number of phases (n = 1,2 ...)
n - 1 total number of plastic hinges in the nth configuration; by the application of !1rx(nlq the nth hinge

is formed
N; sum of normal forces in all stanchions of storey i for the service load configuration
q symbol for the service load configuration

q(n) = Lq symbol for the highest load applied in the nth phase
1
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total number of floors
total number of nodes
value of increase of displacement of storey i in the nth phase (8th), (disregarding factor D i )

unknown bending moments (j = number of the order of unknowns in the system of equations)
increase in unknown bending moment in section j in nth phase (j > r)
factor defining the total load applied in the nth phase
multiplier of the service load configuration which defines the maximum stress which the structure
can bear in the nth (8th) phase
variation of stress in the pth plastic hinge (p = 1, 2 ... n - I)
rotation of the end of a generic bar a(b) anchored at node K
rotation of pth hinge in the nth phase

INTRODUCTION

LEAVING to a later paper the results of experimental investigation still being carried out,
this study presents through the application of the four-moment equation a technique for

t The present study has been carried out under the auspices of the Centro Studi per l'edilizia of the University
of Naples, supported by the Italsider Company and the Consiglio Nazionale delle Ricerche.
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fully evaluating for a structure the variation of stresses and displacements introduced by
the destabilizing effect of vertical loads assuming an ideal elasto-plastic behaviour of the
material and the idealization of the cross-section of the bars as two concentrated masses.
The computerized calculation procedure illustrated here yields a quantitative evaluation
of the phenomenon in its entirety from a condition of full elasticity to final collapse, within
a time sufficiently short for practical applications.

The structure, initially highly hyperstatic, is progressively weakened, as the load
increases, by the formation of successive plastic hinges, and shows for a value of the load,
which is defined as critica~ a phenomenon of "snapping". Subsequently, under conditions
of instability and with decreasing loads, the structure continues to distort and additional
plastic hinges are formed, which reduce it to a kinematic mechanism.

The preliminary hypotheses and the approximations adopted are also discussed. In
conclusion, it is thought that for structural steel frames, the procedure proposed will provide
an acceptable means of calculation, both from the standpoint of theoretical formulation
and practical application. It is hoped that experimental results to come will also prove
it to be conservative. A selected bibliography on this subject has been included.

1

The calculation of plastic collapse presents difficulties when undertaken in general
terms from a purely theoretical viewpoint as regards the structural configuration, the shape
of the bars (perhaps curvilinear and of variable cross-section), their cross-section and the
material of which they are made.

In practice, however, considerable simplifications can generally be made when proper­
ties mentioned above are specified. In other words, especially important structures can
always be specially designed because in such cases the work-time and design effort are
justified, even though they are greater than normal.

In an earlier study [1] the following restrictive hypotheses have been formulated:

(a) The frame consists of rectangular units built up from rectilinear bars of constant
section and vertical stanchions.

(b) The structure is considered continuous and, for the service loading, the ratio of the
normal force to the Euler load for every bar (PIPE) is small (less than 0'1). This
hypothesis should, in general, be satisfied in framed structures in order to prevent
excessive deformability.

(c) The material used is still with elasto-plastic characteristics presented in the usual
bilinear form, and all loads are increased (or decreased) proportionally, by a
common load factor tx.

(d) The yield limit, experimentally obtained, is not defined by means of a single value
but by a range of values which contains all the test findings on specimens. Such a
hypothesis is appropriate when using an iterative procedure [1] with load increments
determined by tria~ since less precision is required in determining the magnitude of
such increments.

(e) The limit moment corresponding to the formation of a hinge condition is indepen­
dent of the normal force variations subsequent to its formation.

(f) The deformations due to shear and to normal forces, the latter being considered
both as axial shortening and as a reduction in flexural rigidity, are negligible.
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(g) Each hinge forms when the strain in the stanchions due to normal force and bending
moment or the strain in the horizontal bars due to bending moment alone attains
a value within the yield belt, neglecting the effect of the shear force (Fig. 5)t. Also
ignored are local concentrations of stress corresponding to points of load applica­
tion and connections at nodes, as well as any other possible local effects such as
internal rolling stresses and faults, material flaws, eccentricities of construction, etc.

(h) The cross-section is idealized by two concentrated masses. Included in this hypo­
thesis, it is felt, are most of the sections used in steel structures, e.g. I -beams and box
beams.

(i) The hinges are localized in one cross-section, taking account of its shape. The
eccentricity of the hinge, depending on the simultaneous presence of a bending
moment and a normal force, has been ignored.

Under these conditions the limit of elasticity is reached throughout a given section at
the same time. The present study, from a theoretical point of view, is not substantially
affected if the ultimate stress in the bar is reached at the same time throughout any other
part of its length.t

Through such hypotheses, there was proposed in a previous study [I] an iterative
procedure to analyse, step-by-step, the stresses and deformations of a structure in the
elasto-plastic range. The destabilizing effects of vertical loads were also taken into account
(Fig. I) and there was thus obtained a critical value IX· of the load factor for a hyperstatic
structural design. The results are substantially different from those of the "rigid-plastic"
theory which, apart from any destabilizing effect, identifies the collapse with the value of
the critical load factor which makes the structure partially or completely unstable.

X,Di

hi
STOREY

STOREY ,.1

STOREY t ••

FIG. 1 The forces Hi represent the destabilizing effect of the total vertical load N i acting on floor i,
due to the inclination X,D;/hi of storey i.

t In order to take into account the phenomena of hyperelasticity, it is convenient to assume values for the
limit of elasticity based on physical flexural tests of each bar.

t This case would correspond to a constant moment throughout a simple bar, the normal force being held
constant.



262

ex.

MICHELE PAGANO and GIOVANNI MORABITO

40.00

30.00

20.00

10.00

5.00
4.113

4.71

4.44

4.00

3.&5

3.00

2.00 I
P -4 t

11

o
L---------·,---·------TI-------------,---------TI-----;~~

10 20 30 40 A4cm

FIG. 2(a). Curve (1) represents the link between the load factor and the displacement of the bottom floor (A4 )

according to the new theory; Curve (2) represents this same link according to the rigid-plastic theory; Curve (3) is
relative to the state of instability of the bottom storey (i = 4~ in continuation of curve (1); Curve (4) is analogous
to curve (3), but takes into account the effect of normal stress; Curve (4') is again analogous to curve (3), but does
not take into account the destabilizing effect of vertical loads and is continued up to the axis of the ordinates;
Curve (5) represents the critical load factor (in the elastic range) referred to curve (2). FIG. 2(b). Configuration of
frame with service loads (Ilt = I). FIG. 2(c). Constant cross-section of beams HEb 300. FIG. 2(d) Curve (I) of

Fig. I(a) shown to different scale.
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The two theories are compared in Fig. 2. The abscissa represents the lateral displace­
ment of the bottom storey (~4) and the ordinate represents the load factor (tx).

Curve (1) refers to the study mentioned above. It shows that the frame, having attained
the value tx* = 3·65 after several load increments, subsequently deforms according to
the descending arc of the curve (unstable) corresponding to load decrements.

Curve (2~ on the contrary, relative to rigid-plastic theory, shows only an ascending
line in which the structures bear successive load increments and reaches a final value
which is much higher (tx* = 4'71) than the one shown in the previous curve (1).

7 2

0.= 3.00 (1) a= 3.115 ®
0.= 3.24 CD a= 3.115 @
0.= 3.34 00 0.= 3.64 @
0.= 3.49 00 0.= 3.113 @
0.= 3.ll4 00 0.= 3.511 @

FIG.3(a)
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FIG. 3. Plastic hinges formed in the frame in the order corresponding to the numeration. The value of the
load .factor is shown, (a) = new procedure, (b) = rigid-plastic theory.

Along curves (1) and (2) are shown the hinges which are gradually formed in the frame
[Figs. 3(a) and (b)]. They differ, in the two theories, both in number and distribution.

Curve (3) illustrates the conditions of equilibrium of the kinematic mechanism which
forms at the end of curve (1) and its equation is:
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in which 1:Mi'k represents the sum of the limit moments of the sections of the extremities
of the columns of the bottom floor and D4X4 represents the horizontal component of the
displacement of the first floor. If in the evaluation of the limit moment, account is taken
of the existing normal stress, then the values of Mi'k are all different from one another.
In describing the curve (3), the values of Mi'k have been assumed constant and correspond
to the value of the normal stress that is present in every section at the end of curve (1).

If on the other hand, account is taken of the variability of the normal stress, then
curve (4) is obtained, whose equation is:

where N p is the "fully plastic thrust" and H is the height of the cross-section. [Fig. 2(c).]
Furthermore, curve (4~ which is in fact a horizontal, is derived from the preceding

relationship, provided the destabilizing effect of the vertical loads is ignored. In this case
the first term of the denominator vanishes.

Curve (5) traces the values of the global critical load factors in the elastic range for the
structural schemes which are gradually formed, in accordance with the rigid-plastic theory
shown for curve (2). For each structural scheme of curve (2~ real hinges are substituted
for plastic ones and the material itself is considered as ideally elastic.

The values of these critical factors can be found by reducing to zero the determinant
of the system of equations corresponding to the successive schemes of the structure.

In [2] the calculation procedure which was carried out with the aid of an electronic
computer is shown in detail. For the initial structural scheme, which is very rigid, the
value of the critical factor in the elastic range proves to be very high (over 40). For the
successive schemes, the value decreases with the increase in the number of hinges and,
for a value of approximately a = 4, curve (5) intersects curve (2). After this intersection
curve (2) loses any physical meaning.

It is evident from the comparison that the two theories identify collapse with values of
a and of ~ which differ considerably and it is therefore necessary to introduce the
phenomenon of instability in the study of the behaviour of the structure. But for practical
technical application it appeared necessary to re-examine the hypothesis adopted and also
to work out a sufficiently rapid scheme of calculation. Some of the quoted hypotheses
can be verified without any further discussion-as for instance (a) and (b)-whereas others
involve an approximation whose accuracy must be verified from both the theoretical
[(c~ (d) and (e)] and the experimental points of view [(f(, (g), (h) and (i)]. Also, the iterative
procedure is undoubtedly very laborious and is therefore of little use in practical applica­
tions.

Such are the objections that gave rise to a programme of research. The present paper
reports the theoretical results achieved to date in this effort, which are as follows:

(a) Formulation and organization of a calculation procedure which could be carried
out by an electronic computer and be rapidly put into technical practice. This
calculation is based on the four-moment equation and introduces into conditions
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of horizontal equilibrium the destabilizing effect of vertical loads. The equation
system, changing from one deformed shape of the structure to the next, is considered,
together with the plasticization conditions, written for all the most stressed sections,
and any other conditions which, during the calculation, control the sign of the
variations in the rotation of plastic hinges after their formation.

(b) The elimination of the hypothesis admitting the existence of the "yield belt" in
materials. Such a hypothesis, though corresponding to a physical reality and being
highly useful for the application of the iterative procedure proposed, suffers from
the theoretical defect of not being strictly conclusive to the achievement of static
conditions of safety, since, once the existence of a yield belt is admitted, it is always
necessary for absolute safety, to relate the formation of a plastic hinge to its lowest
limit.

(c) Elimination of the simplifying hypothesis which requires the limit moment, corres­
ponding to the formation of a plastic hinge, independently of the normal force
variation which occurs after its formation. In general, when the external loads
acting on the structure increase, the normal force varies in each plastic hinge and
the limit moment is modified according to the link defined by the boundary AB of
the elasto-plastic range as shown in Fig. 5(a). In a separate paper a report will be
made on experimental research on a model aimed at comparing theory with
practical reality and checking the validity of the above-mentioned hypotheses.

2

In relation to the choice calculation process, it is noted that the calculating system,
with the possibilities opened up by computerization, must enable the designer to intervene
easily when, with increasing load, the structural geometry becomes modified. Further, the
choice of one of the two well known groups of methods available for the theoretical analysis
of a highly hyperstatic structure (the "force" and "deformation" methods), permits the
adoption ofa system ofequations and the discarding of the procedure of successive approxi­
mations.

The method using the "four-moment equation" has been chosen, since this possesses
the essential advantage that the unknowns are the effective bending moments at the
extremities of the bars, just at the points where the plastic hinges mainly form; furthermore,
it is not difficult to write the expression for the bending moments acting along a bar, in
terms of the effective bending moment acting at its extremities. This enables one to operate
directly on the unknowns, by imposing suitable conditionst for the various structural
geometries which vary as stresses are increased, and successive plastic hinges are formed.
In fact, when the system lof equations corresponding to the initial structural geometry has
been written, it is easy to modify it by excluding equations which subsequently lose their
validity (because they express congruence conditions which have lapsed) and introducing
appropriate equations to express constraints of plasticity for the cross-sections of the frame
in which the material has reached the limit ofelasticity in the domain (M, N) represented by
the straight line AB in Fig. 5(a).

t The advantage of acting directly on the unknowns compensates for the fact that the sets of equations to be
solved is greater than that involved in a "deformation" method.
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3
For the practical application of the procedure discussed there must be written, for

the initial geometry, the equilibrium relations of the translation of the storeys and the
rotation of the nodes, as well as all the congruence relationships possible for each node and
the expressions of the maximum stresses in those sections where it is anticipated that the
elasticity limit will be exceeded. The system of equations, as related to the nth stage, in
which the structural system has n - 1 plastic hinges, is then made up of the following:

(a) the equilibrium equations of the translation of the storeys, equivalent to the number of
storeys (r)

(b) the equilibrium equations of the rotations of the nodes, equivalent to the number of
nodes (t)

(c) the congruence equations, so selected in each node as to be linearly independent.t
This selection is initially free [with m(m - 1)/2 possibilities in each node], whereas
it will become increasingly restricted, in successive stages, for those nodes where
plastic hinges form

(d) a number of plasticization equations, equivalent to n -1, expressing constraint upon
any increase of stress in the already plasticized sections

(e) the conditions which maintain a constant sign of rotation in every plastic hinge, in all
the phases after their formation.

If the value of ~(X(n) is the maximum load increase bearable by the nth structural con­
figuration, i.e. such as to bring another section to the threshold of plasticity in such a way
that the number of hinges goes from n - 1 to n, then the corresponding analysis may be
expressed symbolically in the following way:

~(X(n)N.D. (n~
1

X\s) +x\n») +(X(n - 1)N.D .x\n)
I I L I I I I I

s= 1

(in number equal to t) (1 b)

(a, b: bars forming node K)

~(Jp = 0 (p = I, 2, ... n - I)

cp;(n) _ cp;(n- 1) ~ 0 if cp;(n-l) ~ 0

(lc)

(ld)

(le)

The first term of the sum in parentheses in equations of the type (la), proportional to
the rotation of floor i at the end of the preceding stage (n - I), is known.

In the initial stage (n = 1), the type (ld) equations are absent, as there are no plasticized
sections in the structure.

Only the relationship type (la) associated with the displacement of floor i, deserves
special note, since the destabilizing effect of vertical loads has been introduced. This is the
sum of four terms, of which the third and fourth formally represent the usual ones. For
the other two it should be observed that in the nth phase the structure is subjected to the
new load qn - qn - 1 = ~(X(n)q. The first term in the equation takes into consideration the

t The number of equations equals M - (n - 1) if the n - 1 hinges have all formed at the extremities of the bars
(see the Notation).
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horizontal component of the part of these loads above the floor i, distributed along the
slope of the uprights of storey i and the horizontal. The second term takes into account
the increase, again assessed horizontally, which the analogous components of vertical
load q(n - I), applied in the preceding n - 1 phases, undergo because of the further increase
in the slope of storey i due to the superposition of the additional loads qn - qn - I = Arx(n)q,
corresponding to the nth phase.

4

Initially, that is in the absence of plastic hinges, system (1) contains, as has been said,
only equations of types (1a), (lb), and (1c).

If the loads are increased, the stresses also increase and, in the most highly stressed
sections, the material may reach the limit of elasticity. Generally speaking, it is usually
easy to detect those sections in which, by reason of structural design and load, plasticiza­
tion is likely to occur. Such sections are calculated in terms of the maximum stress.

The hypothesis that the section is made up of only two concentrated masses makes the
formation of a plastic hinge coincide with the reaching of yield stress. The value of the
load factor rx(I) which corresponds to this plasticization condition in the first section,
provides the maximum load q(I) which the structure can bear under conditions of absolute
elasticity. This value is normally calculated on the basis of the current procedure to verify
structural stability. The electronic computer is able to determine the stress values in all the
sections chosen in terms of rx, and hence to provide the value of iX(1). The plasticization
condition which must be verified is expressed in the following form:

M(I)/W +N(I)/A = as

where M(1l and N(I) are the bending and axial characteristics of the first section to become
plasticized, which can be expressed in terms of the unknowns X~ I), W is the flexural modulus
of resistance, and A is the area of the section.

In the following phase, in this plasticized section, no further increases of stress can occur.
Therefore by making the stress due to further load increases equal to zero, we obtain the
first plasticization equation (1 d) to be adhered to which replaces, in the system ofequations,
the congruence equation now no longer valid. In node K, in fact, we may write only (m(k) - 2)
congruence equations (m(k) being the number of bars making up node K).t

The plasticization equation will therefore be:

where M(2) and N(2) are the values of the increases in moment and normal force in the
plasticized section, again expressed in terms of the unknowns X?l.

The procedure to be followed in successive phases is perfectly analogous: the plasticiza­
tion equations are progressively substituted for congruence equations. Such modifications
prove to be very easy by the chosen method of calculation. Load increases sufficient to
create further hinges, become progressively smaller. In fact, there occurs for a phase which
can be termed "critical", corresponding to a structural scheme which is always hyperstatic,
a condition where deformation and stress cease to be the result of increases in load and in

t It is possible that more than one of the equations in the initial system relative to node K in which the hinge
has formed, may become inoperative. In this case, (m - 2) linearly independent equations must be chosen from
among the conditions of congruence relative to the bars where there are no plasticized sections.
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which the load values begin to decrease. In other terms, after this condition is reached, the
system is satisfied if a load reduction occurs (~(X negative), and provides for it a solution
that is still balanced and congruous, though unstable. Even a very slight load increase
would in fact now involve configurations which are no longer in equilibrium, but tending,
by a dynamic succession of movements, towards infinite values of displacements. The pro­
cedure then continues until the configuration becomes partially a kinematic mechanism,
and hence, as has been previously explained, a single equation oftranslation equilibrium by
itself provides all further configurations of equilibrium of the structure which are unstable.
That part of the structure which has become unstable will obviously have deformations
affecting the residual part of the structure which is still hyperstatic or, at the most isostatic,
and which may therefore be considered as rigid in relation to total deformations.

5

For the procedures set out above, two distinct computer programmes have been
formulated which permit the requisite calculations to be made in the SNAP assemblative
symbolic language.

With reference to the nth phase in which n - 1 plastic hinges have already been formed,
the value of the load increase qn_ q (n-1) = ~(X(n)q must be determined and this brings a
further nth section to the limit of elasticity.

(a) In the first programme, a value ~(X • q of load variation is given to the generic phase n,
which is broken-down into suitably small fractions (b~1X . q).

The total interval ~IX • q, to be covered by the step b~1X . q, must be chosen so ~s to ensure
that a further plastic hinge is formed within that interval.

n-l

With reference to system (1), the computer first reads the value L Xi for all r storeys
1

of the frame as well as the value lX(n-1), which emerges from the preceding phases and
which are necessary to construct the known terms bi (with i = 1,2, ... r) and the coeffi­
cients of the leading diagonal (C 11" •. C rr ) of the first r equations, respectively, within
the matrix of the system. The computer is then fed the extreme values ~(Xi and ~(Xf of
the interval assigned for ~lXt and with the step b~1X regarded as most suitable to determine
fairly exactly the point of formation of the plastic hinge. After this, the entire system of
equations is read off and stored in two different memory cans A and B. On the second one,
the method of matrix inversion is used for resolving the system corresponding to the
generic value of ~(X internal to the interval examined. When the results of the interval
assigned for ~IX have been printed out, it is possible, without the computer, to determine
the value ~1X(n) for which the plasticization conditions indicate the attainment of the thresh­
hold of plasticity for a further nth section.

Introducing the corresponding equation type (ld) into the system, in place of type (lc),
which is no longer valid, the computer may be made to start the successive phase (n + 1).

(b) The second programme allows for the carrying out, by the computer, of all the
operations mentioned above, which are necessary not only for solving the single

t Note that the load to be applied to the structure may have a negative value, and therefore the interval to
be assigned to lia. must also take this possibility into account.
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elementary system, but also for checking these equations expressing plasticization
conditions. These conditions are then read off and appropriately stored.

In this second programme the computer is given the instructions Lla i and the step bLla,
omitting the interval Llaj --:-- LlIXJ'

In fact, as soon as a plasticization condition (unequation) is manifested (Lla = Lla(n»),
the computer is programmed to stop and print, with obvious advantages over the preceding
programme. Machine time is in fact considerably reduced and the resolution of the systems
for the interval Lla(n) < Lla < Llaf and the printing of those relative to the interval
Lla j < Lla < Lla(n) are avoided.

Preparatory and resolving operations for the system are identical with those illustrated
for the foregoing programme. Invalid equation detection is additionally inserted, followed
by a test to denote the achievement of a condition of plasticity. If the outcome of the test
shows that plasticity has in fact come about, then the iterative process stops, as already
mentioned, and the computer prints the serial number of the invalid equation which has
occurred and prepares to read a further plastic equation, type (Id), to be substituted for
the elastic-type equation (Ic). A signal from the console resets the system for reading and
the resumption of the cycle.

In each phase, therefore, when an invalid equation (unequation) appears, all the data

and the value of Lla(n) and of a(n-l), and of the bending moments L X j (which have accumu­
I

lated in the n phases) are printed.

6

The procedure set out in the foregoing sections was applied to the frame shown in
Fig. 4(a), subjected to service loads (a = 1). Both above-mentioned programmes were
applied and their flow-charts are shown in Figs. 6 and 7.t

The limit stress value was assumed to be 3'100 kg/cm2
, on the basis of experience

gained on a single structural element. Critical conditions occurred after eight phases
(corresponding to the formation of eight hinges) for increasing values of a (Fig. 8). Under
such conditions the structure is hyperstatic. Subsequently, for decreasing values of a, four
other hinges form and a partial kinematic mechanism is reached. In fact, a mechanism forms
in the bottom storey, where stresses are higher on account of the particular proportional
criterion chosen to indicate more clearly the physical behaviour of the structure and to
distinguish from one another, the various factors giving rise to the formation of successive
hinges.

The position of the hinges, which are progressively formed, are illustrated in Fig. 8.
To each subsequent structural configuration there corresponds an equation system (1)
as explained in Section 3.

In Table 1 are shown the most significant values for all twelve phases the structure goes
through. Figure 9(a) shows the curves which link the load multiplier to the horizontal
displacement of the three floors.

t The calculations were made by the CDC-G 20 type electronic computer of the Electronic Computing
Centre of the Engineering Department of the University of Naples.
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FIG. 4(a). Configuration of the experimental frame and the loads corresponding to IX = 1. All bars are
drawn sections HEb 100.

In Fig. 9(b) is shown the rotation of the hinges in relation to sections 25-27 as a function
of IX. For all the other hinges analogous curves have been found, but the corresponding
numerical values are not shown.

Figure 10 shows the "rigid deformation" of the frame in each phase.

7

By way of example, some equations relating to the eighth phase at the beginning of
which there are only seven hinges are written. The eighth hinge forms when the load factor
has passed from the value 3·8318 (corresponding to the seventh phase) to the value 3·8424.t

The type (la) equations, relating to the conditions of the translation equilibrium of the
storeys, in the system (1) (Section 3) are expressed as follows.

t The equations show the symbol ~1X(8) which represents the load increase leading to the formation, in the frame,
of the eighth plastic hinge. The computer, on the other hand, as already stated and clarified later, analyses
numerous values of ~IX which are variable by a given step.
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FIG. 5(a). (Plastic range) relative to profile HEt, 100 and to two masses of equivalent moment of inertia
concentrated at the ends of the cross-section.

For the top storey we have:

11a.(S)NID(~ XI +X I) +a.(7)N IDX1+XS+X9 +X10+ X 11 +X12
+X I3 +11a.(S).F1.h1 =0

By substituting the values:
7

LXI = 2610·4428 kg-m
1

N ID = 0·027759

a.(7) = 3'8318; F1 = 400 kg; hI = 2'50m



FIG. 4(b). Photograph showing the experimental frame to be tested, together with the method
of applying the load and of measuring the distortion.

[facing page 272
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10

o 10 15 20 25 b)
FIG. 5(b). Comparison between the ultimate strength of an HE 100 profile and two masses with
equivalent moments of inertia, concentrated at the ends of the cross-section, subjected to an eccentric

loading.
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FIG. 6. Flow chart described in Section 7(a).
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FIG. 7. Flow chart described in Section 7(b).
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12

9

5 2

0.= 3.2402 (1) 0.= 3.83111 G)
0.= 3.4831 ® 0.= 3.8424 0
0.= 3.5839 0 0.= 3.8254 0
ex= 3.5943 8) 0.= 3.8185 @
0.= 3.7970 0 0.= 3.8141 @
ex= 3.8020 0 0.= 3.7500 @

FIG. 8. Plastic hinges which are formed, according to the new procedure, in the configuration of the
frame, which forms the model to be submitted to experimental test.

we have:

0·027759 Aoc(S)(2610·4428 + X 1)+ 3·8318 x 0·027759X I

+Xs +X9 +X lO+X 11 +X 12 +X 13 + Aoc(S) X 400 x 2·50 = 0

or:

0'027759(Aoc(S)+ 3'8318)X 1+ X 8 + X 9 + X 10 + XII + X 12 + X 13

= -Aoc(S)(1000+0'027759 x 2610'4428).
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TABLE I. TOTAL VALUES OF THE UNKNOWNS FOR EACH PHASE AS CALCULATED BY THE ELECTRONIC COMPUTER

UNKNOWNS ex. 3.2402 ex = 3.4831 ex. 3.5839 ex. 3.5943 Q'. 3.7970 ex_ 3. 8020

XI 21S1. (e62 2304.9385 R370.55U R378.f41H 1'555.0981' "539.1687

X 2 5578 0662 5846 .4227 5972 5S86 ,1991 .0592 4527. 10.18 4557. 2S55

X 3 .H5S. 89&0 3477 4515 5699 ..1&66 "728 .4790 4520 . .1048 4591 &00110

X 4 - 558. 9690 - 602 0967 - 619. 055& - &20. 77.12 - 650 .4489 - &51 0212

X 5 1815205f 2013 7418 20N .82&7 2077 .8355 2{99 5&05 2201'.5907

X 6 - 145 .20.'4 - 157. 9956 - 164. 1475 - 164 .5(;(4 - 163 SOS6 - 164.&2JI

X 7 961 2252 10SO. 8871 1059. .10&5 10&2. 6326 ifS2 8176 1/35 4.'85

X 8 5'8. 9690 602 0967 619 .OH6 620 7732 650 4889 651 0212

X 9 604. 0171 645 1255 659 3988 661 6775 71& . 7628 719 9574

X 10 - flSf. 9926 - 1855 7462 - 1907. 679" - 1915 2758 - 2054. 0.69 - 20n. 9676

X 77 - 1280.28S9 - 1365 8577 - (-101. 1636 - 1404. 5064 - 1475. 4456 - {4ll. OU7

X 12 961 2252 - 10.10 8875 - 1059 .1065 - 1062. 6.126 - fiS2. 8376 - 1135. 4385

X 73 - 621. 91R1 - 670 44/8 - 68& .8559 - 689 .0414 - N9 680f} - 720. 6584

X 14 - 288 0&6& - 514 ffS6 - 525 4105 - 52.5 4455 - 304 9092 - 501. liS70

X 15 2349.4379 2525. 1647 P598 5251 /?fi07. 0548 2791.1088 2797.9847

X 76 1099.5181 1f82 2648 1221 5564 1226. 5246 1.1&5. 0756 072.0247

X 77 2091. 5601 2IUI. 6827 INIO. 7269 2318. 5025 2517.76RS P525. 9U.s

X 18 - 315. 9504- - 5U 0(/9 - 3S3 988S - 5S6. 19P2 - 4if. 8535 - 418. S005

X 79 145. 9718 lSI . "058 P34 .1'414 237. 9447 .167. /?filS SN. 812S

X2Q - 2i68.&7PI - 2UI 5919 - Roll 18 &97.9 - P429.0710 - /?fi1l0. 70188 -16". 9817

X 27 - 2081.8291 - P265. '704 - 2.140. 7657 - PS49.4960 - R470. liS78 2472. liOO8

X 22 - 1469.6419 - 1571 2389 - 1623 8729 - 1629. 420 - 1798.08{4 - 1805.2760

X 23 - 1229. 7567 - 1290 . flSU - 1331. 1622 - 030 4010 - IUS liS29 - 007406'

X 24 217. 219f 246. 048 281 7853 288 4402 370. 7228 378 lOsS

X 25 26&7. USI 28&2. 1451 2960. 5722 2174. 7004 2971 7004 297J.7004-

X 26 15(3 0953 1614. 1512 1669. N17 1674 4792 {908.18li4 192&.471f

X 27 2&58.1855 P8ll 9952 2973 6807 e9n. 6807 P974.6807 2973.0807

X 28 - US. 2510 - 4J7 4207 - 51& OP67 - 5«. 3850 - n7.9844 - 750.6177

X 29 - 1lS8.5745 - 1957. 4361 - 2107. 6!U6 - 2127 .4320 - 2&29.1446 - 2iN.7f1S'O

X 30 I
--

- 2098. SOU - [>210 .5278 - 2289. 5182 - 2P97.68S6 - 24ff.H89 - Ne7.5726

X 31 - 2626.2028 - /l600. 0778 - 2589. J760 - 2588.0/l1U - 2568.7602 - 25&8.5U8

X 32 - f428.4288 - 1587. 0017 - 1642. 50U - 1644.2796 - /G58. 0477 - 1i66.2739

X 33 - 2P91. 16R4 - 2H2 2255 - 2518. 9575 - P51l.7584 ~9. 7iOO - N88.U~~

I I
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TABLE I (continued)

UNKNOWNS a.. 3.113111 ar .. 3.11424 ar .. 3.11254 ar.3.111115 ar= 3.8141 ar. 3.7500

X, 2GIO.4428 2702.1206 2872. lll8 2927. Mi'6 295.1. 0834 .10til. '119.1

X 2 4870. 5229 5702.01279 72U. GI09 7537 . 4000 7666 . 1779 83.12.5844

X 3 5174 .99.14- 7290.4(4ti 10741 . .1140 11365. tiNO U60.4 .6250 14006.2210

X. - 656 '1776 - 656.461'5 - 6.47 7081 - &.18 6918 - 614 0166 59.1.57&0

X 5 22.?6. 40fl 21248.46RO 12272. 590J 2280. .1005 2283 .152'1 2277.9470

X 6 - 149 gR09 - 110. 5575 - 27.4503 - 7 0019 2. 8105 47.8356

X 7 U50. 0290 102. 12f!18 1207 . 6ti40 1214 . lJ84 1218 .OlJ7 'Ief5 4810

X s 656. i776 U6 .4625 647. 7081 G.14 . 6918 614 . 0166 593 5760

X g 769 .4050 878 611G 1090. 3U8 U24 .4999 ff.40 .36()4 1/6'5 9695

X ,O - 12076.48012 - 2/37. 9044 - "245. 1400 - 2273. 29GG - 2286. 1626 - 23.?5. 78:>6

X" - 1529.. 5716 - 161?1. 1?532 - 1789.4ti85 - 1822 .6416 .. 1837. 07ti7 - ,(876846/

X 12 - 1.(50 . 0290 - 1172 . 2198 - 11?07. 6G4O - Il?I4 .7J84 .. IRIS. OlJ7 .. 1215.48/0

Xu - 701? &694 - 656 .4163 - 550 80.9G .. 506 8777 - 486 1/37 - 346 7f 93

X I. - 2&9 .4959 - 175 9877 22 8032 72 .4437 90. 846'1 181 56/7
._- ----- _.

X'S 2829.9245 .?876'. 1877 2949.5998 2973. 8595 2973. ti323 1?9n.6323

X 16
f---~----

1391. "559 /438. 5483 1540. 7470 1550. 13/3 1554. 2247 16002621
---

X" 259/ .6570 2720 .478f 2977. IU42 2977 .0442 2973 6'445 297.16445

X'S
1--. ~----

- 4" .9090 - 702.6"39 - ((13 . 1870 - ((96. 9436 -"" ~'~F 'm ""X Ig 577 .G294 493.8987 599. 4056 60ti 0&:'0 603 9966 834 0396
f-------- ~--

X 20 - 269/. 1i078 - 2691. 4828 - 2700. 8783 - 2701 3492 - 2690 7803 - 2697 0083
------------ f--- -~~ ---- -

X 21 - 2477. 1i167 - 2683. 7841 - 2691. 1802 - 21i9/.65f1 - 269/ .5818 - 2697 8097
f---,..-~-__+-------

X 22 - 1888.!l876 - 2064. 06/7 - 2426.2345 - 2470. IGG4 - 2487 5308 I - 2ti2ti ..9252

X 23 - 1262.5855 - 987. 6034 - 599. 674. - 5Jf 0584- - 507 805 I - 504 4277

X2. 460 5464 770. 1605 13f9. 2!160 14fU- til84 /467 2829_t- 1821.27.1.9

X 25 P!l73.7004 297.1. 70()4 2974.. 7004 297.1.7004 29n. 7004
1

2973.7004

X 26 2071. 82G4 2280. 3609 2291. 1584 2291.4G66 229/. 40.11 I 2301 7802

X 27 2971. G807 2971. GI07 29n. ti807 297.1.6807 2971 . 6807 297.1. G807

X 2S - 818. 1759 - 12&4.0592 - 19/8 .7037 - 2030.680"- - 2071. 279G - 2ti55 . .H36

X 29 - 2U7. ()4!IJ - 26.10.1511 - 2639. 7023 - 26~2.2177 - 2G4-3 .3127 - 2&54. 6011

X 30 - 2567. 1101 - 2570.2765 - 2673 .6785 - 2.,3.5/51 - 2!JU . 5i'16 - 2679 . 6708
-~

X 31 - 25G7. 7240 - /'570. 0904 - 2573.4-924 - 2573.3298 - 2575 .5555 - 2579. 704-7
---

X 32 - /7f1 .0952 - IU6. 0772 - 2374- .OOGI - f/442.82t>2 - 24G5.8672 - .?4&9.2530

Xu - 12961,5365 - 2472.6227 - 24G5. 194{ - 2465.0829 - 24ti5.191S - 2468.5773

277
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FIG. 9(b). For example, the rotation of the hinges in sections 25 and 27 are shown. The diagram is
analogous for all the other hinges.
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Similarly, for the middle storey (i = 2) we have:

N 2D = 0'055158;

F2 = 800 kg;

7

I X 2 = 4870·5229 kg-m
1

h2 = 2·50m.

Thus obtaining:

0'055158(L\a(8)+3'8318)X 2 + X 18 + X 19 + X 20 + X 21 +X 22 +X 23

-L\a(8)(2000+0'055158 x 4870'5229).

Finally, for the bottom storey (i = 3), we have:

N 3D = 0'082739;

F3 = 1200 kg;

7

IX 3 = 5174'9934kg-m;
1

h3 = 2·50 m.

and obtain:

0'082739(L\a(8) +3'8318)X3 + X 28 +X 29 +X 30 +X 31 + X 32 + X 33

= -L\a(8)(3000+0'082739 x 5174'9934).

The equations relative to the node G at which bars without plastic hinges at the ends
join, are written symbolically:

I
IX~8) = 0

K <POD = <PGH

<POH = <POl

In explicit form we obtain, respectively:t

{

XI9+X24+X20 = 0

X 18 -2X 19 +4X 24 -2X25 -X2 = -2670 L\a(8)

X 29 -2X28 +4X24 -2X 25 -X3 = -2670 L\a(8)

The equations referring to the node H, which, in this phase, develops hinges in the
sections where X 25 and X 30 are applied, are also of type (ld). In symbolic form we have:

I X~8) = 0
K

<PHE = <PHI

L\a25 = 0

L\a30 = 0

t The coefficient of 8CX(S), in the second term written, for the longer bars, has the value of 3 x 2 x /1' = 3 x 2 x ~

PI = 2·670 kg-m. The factor 3 derives from the algebraic sum of the moments of fixing of the two ends of the
bar due to external loads. Factor 2 depends on the fact that the length of the beam is twice the one taken as the
unit of length. For the other bars the coefficient is 3 x /1" = 3 x I PI = 375 kg-m. Factor 2 does not appear in
this instance, since the length of the bar is precisely that of the control. For the stanchions the coefficient is nil.
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We deduce:

X 2o -2X21 +2X26-2X27-X2 = -375~1X(8)

X 25
0.00009592 = 0

-X30 1
0.00009592 + 0.002126 x 5(X4 +X5+X 14 +X 15 +X24 +X25 -2X6

3·000
-2X7-2X16 -2X 17 - 2X26 -2X27)+~1X(8). 0.002126 = O.

In the last equation the normal stress is expressed in terms of the moments X j and of
the external loads. The value ()~IX = 0'0001 has been assigned to the phase under examina­
tion.

The eighth hinge forms in section 21 in which for ~1X(8) = 0·0106 the plasticization
condition is satisfied and has the following expression:

X 21 1
0.00009592 + 0.002126 x 5(X4 +Xs+X14 +X 15 -2X6-2X7-2X16- 2X 17)

(8) 2·000 .
+~IX 0.002126 31,000,000 = O.

In the light of what is set out above, it is thought reasonable to state that the proposed
theory appears to be applicable to rigid steel I-beam frames and that it could become
a valid instrument for practical technical applications, with the help of an electronic
computer.

It is felt that the hypotheses formulated are such as to supply theoretical results giving
a greater margin of safety when compared with the results in practice. In this connection,
the results of experiments still under way, will be communicated as soon as available.

Acknowledgement-We gratefully acknowledge the aid of Mr. F. Macer~ Engineer of the Electronic Computing
Centre, in evolving the programmes.
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Resume-cette etude traite des resultats initiaux des recherches theoriques et experimentales en ce qui concerne
Ie comportement d'une structure de charpente en acier it rayon I sous un plan generique de poids horizontaux
et verticaux proportionnellement variables.
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Zusammenf_g-Diese Abhandlung beschiiftigt sich mit Anfangsergebnissen von theoretischen und experi­
mentalen Untersuchungen tiber das Verhalten von Stahltriigem I-Geriisten auf Grund eines Schema von
verhiiltnissgleichen veriinderlichen senkrechten und waagrechten Belastungen.

AficTpaKr-3Ta CTan.lI paCCMaTpHBaeT OCHOBHble pe3YJIhTaThI TeopeTH'lecKoro H 3KcnepHMeHTaJIhHOro

HCCJIe.o.OBaHHlI. OTHOCllmerOCll K nOBe.o.eHHIO CTpyKTypbI KOHCTPyK~HHCTaJIhHOil: 16amcH no.o. 06melt cxeMoi!:

nponop~OHaJIhHOnepeMeHHbIX BePTHKaJIbHblX H ropH30HTaJIbHbIX Harpy30K.


